1. Prove that \mathbb{Q} is the accumulating set (the set of all accumulating points) of $\mathbb{R}-\mathbb{Q}$.
2. In a metric space (X, d), for any subset D of X, prove that $\overline{\bar{D}}=\bar{D}$.
3. Prove that l^{∞} is not separable.

Hint: First of all, note that $l^{\infty}=\left\{\left(x_{1}, x_{2}, \cdots\right): \sup _{i \in \mathbb{N} \geq 1}\left|x_{i}\right|<\infty\right\}$. Define $E=$ $\left\{\left(x_{1}, x_{2}, \cdots\right):\left|x_{i}\right| \in\{1,0\}\right\}$. It is then clear that $E \subset l^{\infty}, E$ is uncountable and for every pair of elements $y_{1}, y_{2} \in D$ with $y_{1} \neq y_{2}$, we have $\operatorname{dist}\left(y_{1}, y_{2}\right)=1$. With this in mind, if l^{∞} is separable, then there exists $\left\{z_{1}, z_{2}, \cdots\right\} \subset l^{\infty}$, such that $\left\{z_{1}, z_{2}, \cdots\right\}$ is dense in l^{∞}. You can easily reach an contradiction if you can prove the following:

66 ,9 we can find y_{1} and y_{2} in E such that they are both in $B\left(z_{N} ; 1 / 3\right)$ for certain $N \in \mathbb{N}$.

Solution:

1.

Proof. We just need to show that for any $x \in \mathbb{Q}$ and $\epsilon>0$, there exists $y \in \mathbb{R}-\mathbb{Q}$, such that $|x-y|<\epsilon$.

For any $\epsilon>0$, there exists $n \in \mathbb{N}_{\geq 1}$, such that $\frac{\sqrt{2}}{n}<\epsilon$. It then follows that

$$
\left|x-\left(x+\frac{\sqrt{2}}{n}\right)\right|<\epsilon
$$

As x is a rational number, and $\sqrt{2}$ is an irrational number, it follows that $x+\frac{\sqrt{2}}{n} \in \mathbb{R}-\mathbb{Q}$, which finishes the proof.
2.

Proof. As $D \subset \bar{D}$, we have $\bar{D} \subset \overline{\bar{D}}$. We just need to show that $\overline{\bar{D}} \subset \bar{D}$.
For any $x \in \overline{\bar{D}}$, there exists $x_{1}, x_{2}, \cdots \in \bar{D}$, such that $\mathrm{d}\left(x, x_{n}\right) \rightarrow 0$. For any n, as $x_{n} \in \bar{D}$, there exists $y_{n} \in D$, such that $\mathrm{d}\left(x_{n}, y_{n}\right)<\mathrm{d}\left(x, x_{n}\right)$. It then follows that

$$
\mathrm{d}\left(x, y_{n}\right)<2 \mathrm{~d}\left(x, x_{n}\right)
$$

where $y_{1}, y_{2}, \cdots \in D$. As $\mathrm{d}\left(x, x_{n}\right) \rightarrow 0$, we have $\mathrm{d}\left(x, y_{n}\right) \rightarrow$, which indicates that $x \in \bar{D}$ for all $x \in \overline{\bar{D}}$, done.
3.

Proof. We just start from where the hint ends. In other words, we try to find distinct $y_{1}, y_{2} \in E$, such that $y_{1}, y_{2} \in B\left(z_{n} ; 1 / 3\right)$ for some $n \in \mathbb{N}$. If this can be done, according to the triangle inequality, we have $\operatorname{dist}\left(y_{1}, y_{2}\right)<2 / 3$, contradicting the fact that $\operatorname{dist}\left(y_{1}, y_{2}\right)=1$.

We will find such distinct y_{1} and y_{2} using the pigeon hole principle. Assume that such y_{1} and y_{2} does not exist, then for any $n \in \mathbb{N}_{\geq 1}, E \cap B\left(z_{n} ; 1 / 3\right)$ contains at most one point. As $\left\{z_{n}\right\}_{n \in \mathbb{N} \geq 1}$ is dense, we have $l^{\infty}=\bigcup_{n=1}^{\infty} B\left(z_{n} ; 1 / 3\right)$, which, when combined with the fact that $E \cap B\left(z_{n} ; 1 / 3\right)$ contains at most one point, indicates that E is at most a countable set, contradicting the fact that E is uncountable. Done.

